P5 Quick Revision Questions H = Higher tier only SS = Separate science only # Question 1 of 50 • Define force of 50 A push or a pull that is applied by one object on another of 50 Give two examples of contact and non-contact forces of 50 - Contact friction, air resistance, tension or normal contact force - Non-contact gravitational force, electrostatic force or magnetic force of 50 Define a scalar and a vector quantity of 50 Scalar quantities have magnitude only Vector quantities have magnitude and direction of 50 Give the equation for speed and the units of 50 Speed (km/h or m/s) = distance (km or m)/time (h or s) of 50 How would you find the speed at a particular point on a distance-time graph? of 50 Draw a tangent to the line and measure the gradient of the tangent of 50 • If an object is dropped, why does its speed increase as it falls? of 50 It accelerates because it is pulled towards the centre of the earth due to the force of gravity of 50 Define acceleration of 50 Acceleration = change in velocity/time taken of 50 A car accelerates from 10 m/s to 30 m/s in 8s. What is the acceleration? of 50 - Acceleration = change in velocity/time taken - = (30m/s 10m/s)/8s - = 2.5 m/s^2 of 50 What does a negative velocity show? ### Answer 9 of 50 A change in direction of 50 A motor cycle travelling at 20 m/s takes 5s to stop. What is its average acceleration? of 50 Acceleration = change in velocity/time taken • = $$(20 \text{ m/s})/(5 \text{ s})$$ • = $$4m/s^2$$ # Question 11 of 50 Give the 4 symbols used to describe motion of 50 - s = displacement (m) - u = initial velocity (m/s) - v = final velocity (m/s) - $a = acceleration (m/s^2)$ # Question 12 of 50 Give the equation for uniform motion of 50 $$v^2 = u^2 + 2as$$ of 50 A train approaches a red signal at 10m/s. The signal turns green and the train accelerates. Once it has travelled another 1000m it is now travelling at 20 m/s of 50 $$v^2 = u^2 + 2as$$ $a = (v^2 - u^2)/2s$ $a = (20^2 - 10^2)/(2 \times 1000)$ $= 300/2000$ $= 0.15 \text{ m/s}^2$ of 50 If the object is slowing down, will v be bigger or smaller than u? ### Answer 14 of 50 v will be smaller than u # Question 15 of 50 Define mass of 50 The amount of substance that is present in an object (kg) # Question 16 of 50 Define weight of 50 The force acting on that mass, if it is in a gravitational field (N) # Question 17 of 50 Give the equation for weight Of 50 Weight (N) = mass (kg) x gravitational field (N/kg) of 50 Calculate the weight on Earth of a 5.0kg mass. Assume g = 9.8 N/kg or 9.8 m/s² (units are equivalent) $$W = mg$$ = 5.0kg x 9.8 N/kg = 49N of 50 What is the point called where the weight of an object can be considered to act? ### Answer 19 of 50 The object's centre of mass # Question 20 of 50 Give Newton's first law - If the resultant force acting on an object is zero it will - If stationary, remain stationary - If moving, keep moving at a steady speed in a straight line # Question 21 of 50 • Define resultant force of 50 The force applied by one source subtracted from that applied by the other source to find the combined force of 50 What does a free-body diagram show? of 50 It shows the magnitude and direction of the forces acting on an object of 50 How can you determine the magnitude and direction of a resultant force? of 50 Draw a scale diagram of 50 Give the equation that links force, mass and acceleration - F = ma - F = resultant force (N) - m = mass (kg) - $a = acceleration (m/s^2)$ of 50 A car of mass 1200kg has a resultant forward force acting on it of 4200N. Calculate its acceleration - F = ma - a = F/m - a = 4200/1200 - $a = 3.5 \text{ m/s}^2$ of 50 Define inertial mass and give the equation - Inertial mass is a measure of how difficult it is to change the velocity of an object - Inertial mass = force/acceleration of 50 Give one way the relationship between force, mass and acceleration can be determined - Light gates with a: - Data logger or - Ticker-timer # Question 28 of 50 Define Newton's third law of 50 Whenever too objects interact, the forces they exert on each other are equal and opposite of 50 If two vehicles experiencing the same braking force decelerate, will they decelerate by the same amount? - Yes if their masses are the same - No if the masses are different of 50 Give the equation for momentum of 50 Momentum (kg m/s) = mass (kg) x velocity (m/s) p = mv of 50 Calculate the momentum of a car with a mass of 1000kg travelling at 20 m/s - Momentum = mass x velocity - \bullet = 1000 x 20 - 20000 kg m/s # Question 32 of 50 What do crumple zones do? of 50 Increase the time between first impact and the car stopping # Question 33 of 50 Define stopping distance of 50 Stopping distance = thinking distance + breaking distance of 50 Give two factors that will affect thinking distance - Tired - Alcohol or drugs - Distracted or lack of concentration of 50 Give two factors that will affect braking distance - Road is wet or icy - Car has poor brakes or bald tyres - Speed of the car is greater of 50 **SS** Define pivot of 50 The point the moment acts around of 50 **SS** What equation is used to calculate the size of a moment of 50 Moment = force x perpendicular distance from the pivot to the line of action of the force of 50 **SS** • A force of 5 N is applied 1.5m from a pivot. Calculate the moment of force about the pivot of 50 - Moment = force x perpendicular distance from the pivot to the line of action of the force - Moment = $5N \times 1.5m$ - Moment = 7.5 Nm of 50 **SS** What are gears used for of 50 • The transmitting of the rotational effect of a force from one part of a machine to another of 50 **SS** Give the equation for pressure of 50 Pressure (p) = force normal to a surface/area of that surface of 50 **SS** Which collisions contribute to atmospheric pressure? of 50 Collisions between air molecules and molecules with a surface e.g. on skin of 50 What is the technical term for a spring returning back to its original length when forces are removed of 50 • Elastic deformation of 50 Define extension/compression of a spring of 50 How much its length changes when the forces are applied # Question 44 of 50 Define the limit of proportionality of 50 A straight line up to a point on a force applied vs extension of 50 Give the equation for elastic potential energy of 50 • $$E_e = \frac{1}{2}ke^2$$ of 50 Calculate the elastic potential energy stored by a spring that has been stretched by 2cm. The spring constant is 30 N/m of 50 • $$E_e = \frac{1}{2}ke^2$$ • $$E_e = \frac{1}{2} \times 30 \times 0.02^2$$ $$\bullet$$ = 0.006 J of 50 A spring has a constant of 10 N/m. Determine its extension once 0.2J of work is done stretching it. Assume the limit of proportionality is not exceeded. of 50 • $$E_e = \frac{1}{2}ke^2$$ • $$0.2 = \frac{1}{2} \times 10 \times e^2$$ • $$e^2 = 0.2/(1/2 \times 10)$$ • $$e^2 = 0.1$$ • = $$0.32m$$ of 50 What apparatus should be used to measure the force applied to the spring? of 50 Load the springs with weight # Question 49 of 50 Explain g-force of 50 A way of comparing forces by measuring the acceleration they produce of 50 Can humans tolerate g forces greater horizontally or vertically? of 50 - Horizontally - 2g+ is dangerous